
EXACT SOLUTIONS OF PROBLEMS ON HARMONIC
VIBRATIONS OF A THERMOELASTIC ROD HAVING
A TRIANGULAR CROSS SECTION WITH ACCOUNT
FOR THE CONNECTEDNESS

A. D. Chernyshev UDC 536.539

Two exact solutions of the problem on harmonic vibrations of a thermoelastic rod with a cross section repre-
senting a right triangle have been obtained with the use of multiaction logic operations. The influence of the
connectedness of the problem as well as the temperature and elastic properties of the indicated rod on the
wave process of its deformation has been investigated. Expressions for the velocities of the temperature, lon-
gitudinal, and shear waves were obtained. A criterion M0 for the expediency of taking into account the con-
nectedness in the formulation of the problem was determined.

Introduction. Of the known solutions of multidimensional problems on vibrations of bodies, we considered
the solution obtain in [1], where a connected model of heat propagation with a finite rate was considered, the solution
obtained in [2] with the use of the boundary-element method, and the solution of the problem on the heating of a cyl-
inder by the friction of a band against its surface, obtained in [3].

Formulation of the Problem. In many cases, temperature fields interact with elastic deformations, and this in-
teraction can be significant. Metals and their alloys exhibit thermoelastic properties under small mechanical and heat
loads. Solid bodies with such complex properties can be defined by different rheological models. For definiteness, we
will use a model in which the total deformation consists of elastic and thermal deformations. The stress tensor is ex-
pressed in terms of the deformation tensor and the temperature with the use of the Duhamel–Neumann dependences [4]:

σij = λ (ekk − 3αtT) δij + 2µ (eij − αtTδij) . (1)

From this point on we will solve the dynamic problem under the plane-deformation conditions. Substituting σij from
(1) into the equation of continuous-medium motion and using the heat-conduction equation, we obtain three differential
equations for the displacements u and v in the Cartesian coordinate system and the temperature T:

λ0uxx + (λ + µ) vxy + µuyy − γTx = ρutt ,   λ0 = λ + 2µ ,

λ0vyy + (λ + µ) uxy + µvxx − γTy = ρvtt ,   γ = (3λ + 2µ) αt ,

b∆T − k (uxt + vyt) = Tt ,   k = γT0
 ⁄ Cρ ,

(x, y) 2 Ω ,   0 ≤ t ≤ t0 ,   (u, v, t) 2 C
 (2)

 (Ω × [0, t0]) .

(2)

The region Ω with a boundary Γ is a right triangle of height h. The quantity k in (2) is called the connectivity coef-
ficient, and the corresponding term in the heat-conduction equation accounts for the effect of change in the tempera-
ture of a solid body as a result of an adiabatic change in its volume. In the case where k = 0, the heat-conduction
equation becomes independent of the equation of motion and can be solved independently, e.g., by the known method
proposed in [5]. At k ≠ 0, the problem becomes much more complex because system (2) becomes connected and each
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of the three equations involves the unknown functions u, v, and T. Naturally, this brings up the following questions:
In which cases should the connectedness be taken into account? What are the properties on which the connectedness
has a significant influence? and Is a resonance possible? To answer these questions, we will analyze exact solutions of
geometrically two-dimensional problems. The following boundary conditions are set for Eqs. (2) in the region Ω with
a boundary Γ:

unΓ = u10 cos ωt + u20 sin ωt ,   τnΓ = τ10 cos ωt + τ20 sin ωt ,   ∂T ⁄ ∂nΓ = q10 cos ωt + q20 sin ωt ; (3)

σnΓ = σ10 cos ωt + σ20 sin ωt ,   uτΓ = v10 cos ωt + v20 sin ωt ,   TΓ = T10 cos ωt + T20 sin ωt .  (4)

We will consider the problem on harmonic vibrations with no initial condition and represent the unknown
quantities u, v, and T in the form

u = U1 (x, y) cos ωt + U2 (x, y) sin ωt ,   v = V1 (x, y) cos ωt + V2 (x, y) sin ωt ,

T = T1 (x, y) cos ωt + T2 (x, y) sin ωt .
(5)

Substitution of (5) into (2) gives

λ0Ujxx + (λ + µ) Vjxy + µUjyy − γTjx + ρω2
Uj = 0 ,     j = 1, 2 ;

λ0Ujyy + (λ + µ) Ujxy + µVjxx − γTjy + ρω2
Vj = 0 ,

b∆T1 − ωk (U2x + V2y) − ωT2 = 0 ,   b∆T2 + ωk (U1x + V1y) + ωT1 = 0 .

(6)

One-Dimensional Solution. At first, for Eqs. (6), we will consider an analogous simpler auxiliary problem
with no boundary conditions for a plane layer in the case where Uj, Vj, and Tj (j = 1, 2) are determined only by the
coordinate x. In line with this assumption, the following designations are introduced:

Uj = Pj (x) ,   Vj = Qj (x) ,   Tj = Rj (x) ,     j = 1, 2 . (7)

In this case, system (6) takes the form of ordinary differential equations

λ0P1
′′ − γR1

′ + ρω2
P1 = 0 ,   λ0P2

′′ − γR2
′ + ρω2

P2 = 0 ,

bR1
′′ − ωkP2

′ − ωR2 = 0 ,     bR2
′′ + ωkP1

′ + ωR1 = 0 ; (8)

µQ1
′′ + ρω2

Q1 = 0 ,     µQ2
′′ + ρω2

Q2 = 0 . (9)

Here, the unknown functions Pj and Rj are combined into the one system (8) because of the connectedness of the
model, and the quantity Qj is defined by individual independent equations (9). Particular solutions of Eqs. (8) and (9)
have the form

Pj = Aj exp (αx) ,   Rj = Cj exp (αx) ,   Qj = Bj exp (βx) ,     j = 1, 2 . (10)

Substitution of (10) into (8) and (9) gives the following relations for Aj, Bj, Hj, α, and β:

λ0α
2
A1 − γαH1 + ρω2

A1 = 0 ,   λ0α
2
A2 − γαH2 + ρω2

A2 = 0 ,
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bα2
H1 − ωkαA2 − ωH2 = 0 ,   bα2

H2 + ωkαA1 + ωH1 = 0 ; (11)

µβ2
B1 + ρω2

B1 = 0 ,   µβ2
B2 + ρω2

B2 = 0 . (12)

From the first two equations of system (11), we obtain

H1 = 
A1

γ
 






λ0α + 

ρω2

α
2
 α
__





 ,   H2 = 

A2

γ
 






λ0α + 

ρω2

α
2
 α
__





 , (13)

where the overscribed bar denotes the conjunction operation. Equating the determinant of system (11) to zero, we ob-
tain the equations

bα2
 (λ0α

2
 + ρω2) = % iω (kγα2

 + λ0α
2
 + ρω2) . (14)

Let us introduce the dimensionless parameters

M0 = 
kγ
λ0

 = 
(3λ + 2µ)2 αt

2
T0

Cρ (λ + 2µ)
 ,   N0 = 

bρω
λ0

(15)

and the designations

A∗ = 




bρω
λ0





2

 − 



1 + 

kγ
λ0





2

 = N0
2
 − (1 + M0)

2
 ,   B∗ = 2 

bρω
λ0

 



1 − 

kγ
λ0




 = 2N0 (1 − M0) ,

K0 = 
1
√2

 √√A∗
2 + B∗

2  + A∗  ,     L0 = 
1
√2

 √√A∗
2 + B∗

2  − A∗  .

(16)

In this case, the roots of the first equation of (14) (with the sign "+") can be represented in the form

if   M0 < 1 ,   then   α1−4
2

 = 
ω
2b

 i (1 + M0) − N0 % (K0 + iL0) ,
(17)

and the roots of the second equation of (14) (with the sign "−") can be defined as

if   M0 < 1 ,   then   α5−8
2

 = 
ω
2b

 − i (1 + M0) − N0 % (K0 − iL0) .
(18)

On condition that M0 > 1, the roots of Eq. (14) (with the sign "+") will have the form

if   M0 > 1 ,   then   α1−4
2

 = 
ω
2b

 i (1 + M0) − N0 % (K0 − iL0) ,
(19)

and the roots of Eq. (14) (with the sign "−") will be defined as

if   M0 > 1 ,   then   α5−8
2

 = 
ω
2b

 − i (1 + M0) − N0 % (K0 + iL0) .
(20)

To obtain the roots α1−8 in explicit form, we will establish that the sign of the imaginary part of the expres-
sion for α1−2

2  is larger than zero, i.e., that the following inequality is true:

1 + M0 − L0 > 0 . (21)
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It can be written, in view of (16), as

2 (1 + M0)
2
 > 2L0

2
 = √[N0

2 − (1 + M0)
2]2 + 4N0

2 (1 − M0)
2  − N0

2
 + (1 + M0)

2
 .

This gives, on several simplifications, the inequality (1 + M0)2 > (1 − M0)2, which is correct because M0 > 0 by defini-
tion. Inequality (21) simplifies the operation of taking the square root of a number in calculating the quantities
α1 − α8, which allows one to obtain concrete expressions for them. For the case M0 < 1, we have

α1 = α10 + iβ10 ,   α10 = √ω
4b

 √√(K0 − N0)
2 + (1 + M0 + L0)

2 + K0 − N0  ,

α2 = − α1 ,   β10 = √ω
4b

 √√(K0 − N0)
2 + (1 + M0 + L0)

2 − K0 − N0  ;

(22)

α3 = α30 + iβ30 ,   α30 = √ω
4b

 √√(K0 + N0)
2 + (1 + M0 − L0)

2 − K0 + N0  ,

α4 = − α3 ,   β30 = √ω
4b

 √√(K0 + N0)
2 + (1 + M0 − L0)

2 + K0 + N0  ; 

(23)

α5 = α10 − iβ10 ,   α6 = − α5 ,   α7 = α30 − iβ30 ,   α8 = − α7 . (24)

In the case where M0 > 1, the designations of the roots contain an asterisk at the top right:

α1
∗
 = α10

∗
 + iβ10

∗
 ,   α10

∗
 = √ω

4b
 √√(K0 − N0)

2 + (1 + M0 − L0)
2  + K0 − N0  ,

α2
∗
 = − α1

∗
 ,   β10

∗
 = √ω

4b
 √√(K0 − N0)

2 + (1 + M0 − L0)
2  − K0 − N0  ; 

(25)

α3
∗
 = α30

∗
 + iβ30

∗
 ,   α30

∗
 = √ω

4b
 √√(K0 + N0)

2 + (1 + M0 + L0)
2  − K0 + N0  ,

α4
∗
 = − α3

∗
 ,   β30

∗
 = √ω

4b
 √√(K0 + N0)

2 + (1 + M0 + L0)
2  + K0 + N0  ;

(26)

α5
∗
 = α10

∗
 − iβ10

∗
 ,   α6

∗
 = − α5

∗
 ,   α7

∗
 = α30

∗
 − iβ30

∗
 ,   α8

∗
 = − α7

∗
 . (27)

If the dimensionless parameter M0 < 1, the quantities α10, α30, β10, and β30 should be determined from (22)–(24);
when M0 > 1, these quantities are determined from (25)–(27). By the form of the characteristic roots (22)–(27), we de-
termine the complex-conjugate pairs that will be used in the subsequent discussion:

α5 = α
__

1 ,   α6 = α
__

2 ,   α7 = α
__

3 ,   α8 = α
__

4 . (28)
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To obtain a general solution of system (8) in explicit form, it is necessary to determine the relations between
the coefficients Aj and Bj (j = 1, 2) at different values of α = αk (k = 1, ..., 8). For this purpose, we will introduce
the following designations:

at   α = αk ] Aj = Aj (αk) ,   Hj = Hj (αk)     (j = 1, 2 ;   k = 1, ..., 8) ,   A1 (αk) = Dk . (29)

All the coefficients A2 (αk) and Hj (αk) are expressed in terms of the quantities Dk, which are considered as complex
constants. On substitution of α = αk (k = 1, ..., 8) into (11) and (13), we determine the desired relations:

A2 (α1−4) = iA1 (α1−4) = iD1−4 ,   A2 (α5−8) = − iA1 (α5−8) = − iD5−8 ,

H1 (αk) = 






λ0αk + 

ρω2

αk
2 α
__

k







 
Dk

γ
     (k = 1, ..., 8) ,

H2 (α1−4) = i 







λ0

γ
 α1−4 + 

ρω2

γ α1−4
2
 α
__

1−4







 D1−4 ,   H2(α5−8) = i 








λ0

γ
 α5−8 + 

ρω2

γ α5−8
2 α
__

5−8







 D5−8 .

(30)

Now the general solution of system (8) will take the form

P1 (x) = ∑ 

k=1

8

Dk exp (αkx) ,   P2 (x) = i ∑ 

k=1

4

Dk exp (αkx) − i ∑ 

k=1

4

Dk+4 exp (αk+4x) ,
(31)

R1 (x) = ∑ 

k=1

8

Dksk exp (αkx) ,   R2 (x) = i ∑ 

k=1

4

Dksk exp (αkx) − i ∑ 

k=5

8

Dksk exp (αkx) ,

sk = 
λ0αk

γ
 + 

ρω2α
__

k

γ αk
2
 .

(32)

To the complex-conjugate pair of characteristic roots (28) correspond the following pairs of complex-conjugate
coefficients:

Dk = 
1
2

 (A0k − iH0k) ,   k = 1, ..., 4 ;   Dk+4 = D
__

k = 
1
2

 (A0k + iH0k) .
(33)

From formulas (30)–(33) the following property follows: the sum of the two terms in expressions (31) and (32) corre-
sponding to the two complex-conjugate characteristic roots αk and αk+4 (k = 1, ..., 4) is a real function. We will dem-
onstrate this with the example of U1(x), where the first term will involve α1 and the second term will involve α5:

D1 exp (α1x) + D5 exp (α5x) = 
1
2

 (A01 − iH01) (cos β10x + i sin β10x) exp (α1x)

+ 
1
2

 (A01 + iH01) (cos β10x − i sin β10x) exp (α1x) = (A01 cos β10x + H01 sin β10x) exp (α1x) .

(34)

For convenience, we will introduce the auxiliary constants

pj = 
1
γ

 λ0 + ρω2 ⁄ αj
2
 αj0 ,   qj = 

1
γ

 λ0 − ρω2 ⁄ αj
2
 βj0 ,     j = 1, 3 , (35)
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α1
2
 = 

ω
2b

 √(K0 − N0)
2 + (1 + M0 + L0)

2 ,   α3
2
 = 

ω
2b

 √(K0 + N0)
2 + (1 + M0 − L0)

2  .

With the use of expression (34) and designations (35), the general solutions (31) and (32) for a plane layer are
brought to the real form. If the variance x in expressions (31) and (32) is replaced by the difference (x − h ⁄ 2), which
is more handy for the further calculations, Pj(x) and Rj(x) take the form

P1 (x) = exp α10 

x − 

h
2



 

A01 cos β10 


x − 

h
2



 + H01 sin β10 


x − 

h
2







+ exp α10 

h
2

 − x

 

A02 cos β10 


x − 

h
2



 − H02 sin β10 


x − 

h
2







+ exp α30 

x − 

h
2



 

A03 cos β30 


x − 

h
2



 + H03 sin β30 


x − 

h
2







+ exp α30 

h
2

 − x

 

A04 cos β30 


x − 

h
2



 − H04 sin β30 


x − 

h
2






 , (36)

P2 (x) = exp α10 

x − 

h
2



 

H01 cos β10 


x − 

h
2



 − A01 sin β10 


x − 

h
2







+ exp α10 

h
2

 − x

 

H02 cos β10 


x − 

h
2



 + A02 sin β10 


x − 

h
2







+ exp α30 

x − 

h
2



 

H03 cos β30 


x − 

h
2



 − A03 sin β30 


x − 

h
2







+ exp α30 

h
2

 − x

 

H04 cos β30 


x − 

h
2



 + A04 sin β30 


x − 

h
2






 , (37)

R1 (x) = A01 exp α10 

x − 

h
2



 

p1 cos β10 


x − 

h
2



 − q1 sin β10 


x − 

h
2







+ H01 exp α10 

x − 

h
2



 

p1 sin β10 


x − 

h
2



 + q1 cos β10 


x − 

h
2







− A02 exp α10 


h
2

 − x

 

p1 cos β10 


x − 

h
2



 + q1 sin β10 


x − 

h
2







+ H02 exp α10 


h
2

 − x

 

p1 sin β10 


x − 

h
2



 − q1 cos β10 


x − 

h
2







+ A03 exp α30 

x − 

h
2



 

p3 cos β30 


x − 

h
2



 − q3 sin β30 


x − 

h
2







+ H03 exp α30 

x − 

h
2



 

p3 sin β30 


x − 

h
2



 + q3 cos β30 


x − 

h
2







− A04 exp α30 


h
2

 − x

 

p3 cos β30 


x − 

h
2



 + q3 sin β30 


x − 

h
2







+ H04 exp α30 


h
2

 − x

 

p3 sin β30 


x − 

h
2



 − q3 cos β30 


x − 

h
2






 , (38)

1086



R2 (x) = − A01 exp α10 

x − 

h
2



 

p1 sin β10 


x − 

h
2



 + q1 cos β10 


x − 

h
2







+ H01 exp α10 

x − 

h
2



 

p1 cos β10 


x − 

h
2



 − q1 sin β10 


x − 

h
2







− A02 exp α10 


h
2

 − x

 

p1 sin β10 


x − 

h
2



 − q1 cos β10 


x − 

h
2







− H02 exp α10 


h
2

 − x

 

p1 cos β10 


x − 

h
2



 + q1 cos β10 


x − 

h
2







− A03 exp α30 

x − 

h
2



 

p3 sin β30 


x − 

h
2



 + q3 cos β30 


x − 

h
2







+ H03 exp α30 

x − 

h
2



 

p3 cos β30 


x − 

h
2



 − q3 sin β30 


x − 

h
2







− A04 exp α30 


h
2

 − x

 

p3 sin β30 


x − 

h
2



 − q3 cos β30 


x − 

h
2







− H04 exp α30 


h
2

 − x

 

p3 cos β30 


x − 

h
2



 + q3 sin β30 


x − 

h
2






 . (39)

The general solution of Eqs. (9) is obtained analogously:

Qj (x) = Bj1 cos ω √ρ
µ

 

x − 

h
2



 + Bj2 sin ω √ρ

µ
 

x − 

h
2



 ,   j = 1, 2 . (40)

The general integrals for a thermoelastic plane layer (36)–(40) contain eight arbitrary constants A0j, H0j (j = 1, ..., 4)
and four constants Bj1, Bj2 (j = 1, 2) that are determined from the conditions set at the boundaries of the layer. The
functions determined will be used for obtaining exact solutions for a thermostatic rod of triangular cross section.

The First Exact Solution. The results presented below were obtained by a special technique with the use of
ξ variables [6] in the following way.

Let r0 and r be the radii-vectors of any pole and an arbitrary point inside the cross section of a rod Ω, rk (k
= 1, 2, 3) be the radii-vectors of the vertices of the right triangle Ω of height h, and the auxiliary variables ξ and
ξk be determined by the formulas

ξ = (r − r0) n ,   ξk = (r − rk) nk ,   k = 1, 2, 3 , (41)

where n is a unit vector, nj are internal unit normals to the sides of the triangle Ω, the vertices and sides of which
are numbered in a counterclockwise direction. With such variables ξk, the equations for the sides of the triangle will
have the form ξ1 = 0, ξ2 = 0, and ξ3 = 0. For the points (x, y) 2 Ω, the strict inequalities ξ1 > 0, ξ2 > 0, and
ξ3 > 0 are true. The variables ξ and ξk and the normals nk in the plane (x, y) possess the following properties that will
be used in the subsequent discussion:

n1 + n2 + n3 = 0 ,   n1n2 = n1n3 = n2n3 = − 1 ⁄ 2 ,

n1 × n2z = n2 × n3z = n3 × n1z = √3  ⁄ 2 ,   ξ1 + ξ2 + ξ3 = h ; 
(42)

if   F = F (ξ) 2 C
 2

 (Ω) ,   then   Fx = F ′  (ξ) nx ,   Fy = F ′  (ξ) ny ,
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Fxx = F ′′  (ξ) nx
2
 ,   Fxy = F ′′  (ξ) nxny ,   Fyy = F ′′  (ξ) ny

2
 ,   ∆F = F ′′  (ξ) . (43)

Using Pj(x), Qj(x), and Rj(x), obtained from (36)–(40), where x should be replaced by ξ, we will obtain the following
partial solution of system (6) [7]:

Uj (x, y) = Pj (ξ) nx − Qj (ξ) ny ,   Vj (x, y) = Pj (ξ) ny + Qj (ξ) nx ,   Tj (x, y) = Rj (ξ) ,   j = 1, 2 . (44)

The functions Uj, Vj, and Tj differ radically from each other in structure. This is explained by the fact that (Uj, Vj) is
a vector function and Tj is a scalar function, and the change from x to the variable ξ is equivalent to a rotation of the
coordinate system. In this case, the vector functions are rearranged by the vector-algebra laws and the scalar functions
remain unchanged; therefore, the functions (Uj, Vj) involve the projections of the normal vector nx and ny, accounting
for the above-indicated rotation, and these projections are not involved in Tj in such a form. In the subsequent discus-
sion, the following two properties will be used.

Property 1. If the functions Pj(x), Qj(x), and Rj(x) used in expressions (44) are solutions of systems (8) and
(9), i.e., have the form of (36)–(40), Uj, Vj, and Tj determined from (44) satisfy all the differential equations of (6).

Property 2. The functions Qj(ξ) in (44), representing partial solutions of Eqs. (9), can be selected inde-
pendently of the partial solutions Pj(ξ) and Rj(ξ).

To prove these properties, we substitute Uj, Vj, and Tj determined from (44) into the first and third equations
of (6); analogous actions are performed for the second and fourth equations. Using the partial derivatives determined
from (43), we obtain

λ0 (Pj
′′ nx

3
 − Qj

′′ nx
2
ny) + (λ + µ) (Pj

′′ nxny
2
 + Qj

′′ nx
2
ny)

+ µ (Pj
′′ nxny

2
 − Qj

′′ ny
3) − ρω2

 (Pjnx − Qjny) = 0 ,   j = 1, 2 ;

bR1
′′ − kω (P2

′ nx
2
 − Q2

′ nxny) − kω (P2
′ ny

2
 + Q2

′ nxny) − ωR2 = 0 .

(45)

The vector (nx, ny) is a unit vector; therefore, the last equation of (45), on simplification, becomes identical to the
third equation of (8). In the first equation of (45), all the terms ahead of Pj and Qj are regrouped in the following
way:

Pj′′ nx (λ0nx
2
 + (λ + µ) ny

2
 + µny

2) + ρω2
nxPj − Qj′′ ny (λ0nx

2
 − (λ + µ) nx

2
 + µny

2) − ρω2
nyQ1 = 0 . (46)

The coefficients of Pj′′ and Qj′′ are rearranged by the formulas

(λ0nx
2
 + (λ + µ) ny

2
 + µny

2) = λ0nx
2
 + λ0ny

2
 = λ0 ,   (λ0nx

2
 − (λ + µ) nx

2
 + µny

2) = µnx
2
 + µny

2
 = µ , (47)

in view of which Eq. (46) can be written as

nx (λ0Pj
′′ − γRj

′ + ρω2
Pj) − ny (µQj

′′ + ρω2
Qj) = 0 . (48)

Since Pj, Qj, and Rj satisfy Eqs. (8) and (9) in their structure, the parenthetical expressions (48) are equal to zero. It
follows herefrom that the above-indicated properties are proved. If the variable ξ on the right side of expressions (44)
is replaced by any variable ξk determined from (41), the newly obtained Uj, Vj, and Tj will also satisfy system (6).

For the sake of convenience of representation of the exact solution, we introduce the functions

Pj
(a)

 (ξ1) = Pj (ξ1) − Pj (h − ξ1) ,   Rj
(s)

 (ξ1) = Rj (ξ1) + Rj (h − ξ1) ,   j = 1, 2 ;

Qj
(s)

 (ξ1) = Bj1 cos ω √ρ
µ

 

ξ1 − 

h
2



 ,     Qj

(a)
 (ξ1) = Bj2 sin ω √ρ

µ
 

ξ1 − 

h
2



 .

(49)
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The functions Pj
(s)(ξ1) and Rj

(a)(ξ1) are introduced in a similar way. If Pj(ξ1) and Rj(ξ1) involve eight constants,
Pj
(s)(ξ1) and Rj

(a)(ξ1) involve only four constants, which will be denoted as E1–E4; in this case,

E1 = 2 (A01 − A02) ,   E2 = 2 (H01 − H02) ,   E3 = 2 (A03 − A04) ,   E4 = 2 (H03 − H04) . (50)

The functions Pj
(a)(ξ1) and Rj

(s)(ξ1) have the form

P1
(a)

 (ξ) = E1 cos β10 

ξ − 

h
2



 sinh α10 


ξ − 

h
2



 + E2 sin β10 


ξ − 

h
2



 cosh α10 


ξ − 

h
2




+ E3 cos β30 

ξ − 

h
2



 sinh α30 


ξ − 

h
2



 + E4 sin β30 


ξ − 

h
2



 cosh α30 


ξ − 

h
2



 , (51)

P2
(a)

 (ξ) = E2 cos β10 

ξ − 

h
2



 sinh α10 


ξ − 

h
2



 − E1 sin β10 


ξ − 

h
2



 cosh α10 


ξ − 

h
2




+ E4 cos β30 

ξ − 

h
2



 sinh α30 


ξ − 

h
2



 − E3 sin β30 


ξ − 

h
2



 cosh α30 


ξ − 

h
2



 , (52)

R1
(s)

 (ξ) = (E1p1 + E2q1) cos β10 

ξ − 

h
2



 cosh α10 


ξ − 

h
2



 + (E2p1 − E1q1) sin β10 


ξ − 

h
2



 sinh α10 


ξ − 

h
2




+ (E3p3 + E4q3) cos β30 

ξ − 

h
2



 cosh α30 


ξ − 

h
2



 + (E4p3 − E3q3) sin β30 


ξ − 

h
2



 sinh α30 


ξ − 

h
2



 , (53)

R2
(s)

 (ξ) = (E2p1 − E1q1) cos β10 

ξ − 

h
2



 cosh α10 


ξ − 

h
2



 − (E1p1 + E2q1) sin β10 


ξ − 

h
2



 cosh α10 


ξ − 

h
2




+ (E4p3 − E3q3) cos β30 

ξ − 

h
2



 cosh α30 


ξ − 

h
2



 − (E3p3 + E4q3) sin β30 


ξ − 

h
2



 sinh α30 


ξ − 

h
2



 . (54)

The index (s) or (a) at the top right of the quantities means that the function is symmetric or antisymmetric relative
to the point ξ = h ⁄ 2; therefore, the following equalities are fulfilled for them:

Pj
(a)

 (ξ1) = − Pj
(a)

 (h − ξ1) ,   Rj
(s)

 (ξ1) = Rj
(s)

 (h − ξ1) ,

Pj
(a)′

 (ξ1) = Pj
(a)′

 (h − ξ1) ,   Rj
(s)′

 (ξ1) = − Rj
(s)′

 (h − ξ1) .

(55)

The solution of problem (6) with boundary conditions (3) represents the sums

Uj (x, y) = Pj
(a)

 (ξ1) n1x + Pj
(a)

 (ξ2) n2x + Pj
(a)

 (ξ3) n3x − Qj
(s)

 (ξ1) n1y − Qj
(s)

 (ξ2) n2y − Qj
(s)

 (ξ3) n3y ,

Vj (x, y) = Pj
(a)

 (ξ1) n1y + Pj
(a)

 (ξ2) n2y + Pj
(a)

 (ξ3) n3y + Qj
(s)

 (ξ1) n1x + Qj
(s)

 (ξ2) n2x + Qj
(s)

 (ξ3) n3x ,

Tj (x, y) = Rj
(s)

 (ξ1) + Rj
(s)

 (ξ2) + Rj
(s)

 (ξ3) ,   j = 1, 2 .

(56)

Because of properties 1 and 2, the values of Uj, Vj, and Tj determined from (56) satisfy Eqs. (6). It remains to fulfill
the boundary conditions (3), which will be preliminarily rearranged. The normal component of the displacements in
Γ is defined as

unΓ = (unx + vny)Γ    or   (Ujnx + Vjny)Γ = uj0 ,   j = 1, 2 . (57)
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In the problems being considered, it is assumed that all the analytical dependences are equivalent in relation to the
sides of the right triangle; therefore, it will be sufficient to fulfill the boundary conditions at any one of its sides, e.g.,
at the side ξ3 = 0. In this case, at the two sides of the triangle, the boundary conditions will be fulfilled automatically
at ξ1 = 0 and ξ2 = 0. For the points (x, y) at the triangle side ξ3 = 0, the variables ξ1 and ξ2 are related, at ξ3 = 0,
by the relation

ξ1 + ξ2 = h . (58)

Substituting Uj and Vj, determined from (56), into (57) at ξ3 = 0 and using (58), we obtain


Pj

(a)
 (ξ1) (n1n3) + Pj

(a)
 (h − ξ1) (n2n3)


 + Pj

(a)
 (0) +

+ Qj
(s)

 (ξ1) (n1 × n3)z + Qj
(s)

 (h − ξ1) (n2 × n3)z

 = uj0 ,   j = 1, 2 .

(59)

Using properties (42) and (55), it can be shown that all the terms with variables ξ1 in both square brackets cancel one
another and, therefore,

Pj
(a)

 (0) = uj0 ,     j = 1, 2 . (60)

The boundary condition for the shear stress, determined from (13), can be defined, in accordance with (1), as

τnΓ = 2µγnΓ = 




∂uτ

∂n
 + 

∂un

∂τ







Γ

 . (61)

If the normal stress in Γ is determined by the unit vector n = (nx, ny), the shear stress in Γ in the plane problem will
be determined by the unit vector τ = (−ny, nx). Therefore, the shear component of the displacement vector in Γ is de-
termined from the equality

uτΓ = (− uny + vnx)Γ . (62)

The normal component un in Γ, determined from (3), is assumed to be constant at different points of the boundary;
therefore, the expressions for the shear γn can be simplified:

2γnΓ = 
∂uτ

∂n



Γ

 = 



− 

∂u

∂n
 ny + 

∂v

∂n
 nx







Γ

 . (63)

Now the boundary conditions for τn, determined from (3), take the form

µ 



− 

∂Uj

∂n
 ny + 

∂Vj

∂n
 nx







Γ

 = τj0 ,   j = 1, 2 . (64)

Substitution of Uj and Vj determined from (56) into (64) at ξ3 = 0 gives

− Pj
(a)′

 (ξ1) (n1 × n3)z (n1n3) + Pj
(a)′

 (h − ξ1) (n2 × n3)z (n2n3)



+ Qj
(s)′

 (ξ1) (n1n3)
2
 + Qj

(s)′
 (h − ξ1) (n2n3)

2
 + Qj

(s)′
 (0) = 

τj0

µ
 ,   j = 1, 2 . (65)

In accordance with (42) and (55), the expressions in both square brackets are equal to zero and, therefore, from (65)
we obtain
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Qj
(s)′

 (0) = 
τj0

µ
 ,   j = 1, 2 . (66)

From (66) it follows that

Bj1 = 
τj0

ω √µρ
  ⁄ sin 








1

2
 ωh √ρ

µ







 ,   j = 1, 2 ,   ω ≠ ω∗

 = 2 
πn

h
 √µ

ρ
 . (67)

It is seen from this expression that a resonance between the shear deformations can arise in a thermoelastic material
at ω = ω∗. It remains to fulfill the last boundary condition determined from (3) for the heat flow at the side ξ3 = 0.
This condition, on substitution of Tj(x, y) from (56), takes the form


Rj

(s)′
 (ξ1) (n1n3) + Rj

(s)′
 (h − ξ1) (n2n3)


 + Rj

(s)′
 (0) = qj0 ,   j = 1, 2 . (68)

Using (42) and (56), we prove that the bracketed expression is equal to zero and, from (68), obtain the equation

Rj
(s)′

 (0) = qj0 ,   j = 1, 2 . (69)

From the closed system of equations (60) and (69), we determine the constants E1–E4.
The Second Exact Solution. Let the boundary conditions be defined by (4); then the second condition, deter-

mined from (4), can be rearranged to the more suitable form

uτΓ = (− uny + vnx)Γ   or   (− Ujny + Vjnx)Γ = vj0 ,   j = 1, 2 . (70)

The solution of problem (6) with boundary conditions (4) will have the form

Uj (x, y) = Pj
(s)

 (ξ1) n1x + Pj
(s)

 (ξ2) n2x + Pj
(s)

 (ξ3) n3x − Qj
(a)

 (ξ1) n1y − Qj
(a)

 (ξ2) n2y − Qj
(a)

 (ξ3) n3y ,

Vj (x, y) = Pj
(s)

 (ξ1) n1y + Pj
(s)

 (ξ2) n2y + Pj
(s)

 (ξ3) n3y + Qj
(a)

 (ξ1) n1x + Qj
(a)

 (ξ2) n2x + Qj
(a)

 (ξ3) n3x ,

Tj (x, y) = Rj
(a)

 (ξ1) + Rj
(a)

 (ξ2) + Rj
(a)

 (ξ3) ,   j = 1, 2 .

(71)

Substitution of (71) into (70) at ξ3 = 0 gives

− Pj
(s)

 (ξ1) (n1 × n3)z + Pj
(s)

 (h − ξ1) (n2 × n3)z 



+ Qj
(a)

 (ξ1) (n1n3) + Qj
(a)

 (h − ξ1) (n2n3)

 + Qj

(a)
 (0) = vj0 ,   j = 1, 2 . (72)

It can be shown, using (42) and (55), that both bracketed expressions containing ξ1 are equal to zero; therefore, from
(72) it follows that

Qj
(a)

 (0) = vj0 ,   j = 1, 2 . (73)

Hence, using the expression for Qj
(a)(ξ1), from (49) we obtain

Bj2 = − vj0
 ⁄ sin 







1
2

 ωh √ρ
µ







 ,   j = 1, 2 ,   ω ≠ ω∗

 = 2 
π
h

 √µ
ρ

 .
(74)

In order that the first boundary condition determined from (4) can be used, it should be rearranged:
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σnΓ = λ0 
∂un

∂n



Γ

 = λ0 
∂
∂n

 (unx + vny)Γ   or   
∂
∂n

 (Ujnx + Vjny)Γ = 
σj0

λ0
 ,   j = 1, 2 . (75)

Substitution of (71) into (75) and then into the third condition determined from (4) gives


Pj

(s)′
 (ξ1) (n1n3)

2
 + Pj

(s)′
 (h − ξ1) (n2n3)

2
  + Pj

(s)′
 (0)

+ Qj
(a)′

 (ξ1) (n1 × n3)z (n1n3) + Qj
(a)′

 (h − ξ1) (n2 × n3)z (n2n3)

 = vj0 ,   j = 1, 2 ; (76)


Rj

(a)
 (ξ1) + Rj

(a)
 (h − ξ1)


 + Rj

(a)
 (0) = Tj0 ,   j = 1, 2 . (77)

Since the functions Pj
(s)(ξ1), Qj

(a)(ξ1), and Rj
(a)(ξ1) possess properties (55), the bracketed expressions (76) and (77) are

equal to zero; therefore,

Pj
(s)′

 (0) = vj0 ,   Rj
(a)

 (0) = Tj0 ,   j = 1, 2 . (78)

The functions Pj
(s)(ξ1) and Rj

(a)(ξ1) contain four constants and have the following form:

E5 = 2 (A01 + A02) ,   E6 = 2 (H01 + H02) ,   E7 = 2 (A03 + A04) ,   E8 = 2 (H03 + H04) , (79)

P1
(s)

 (ξ) = E5 cos β10 

ξ − h

2



 cosh α10 


ξ − 

h
2



 + E6 sin β10 


ξ − h

2



 sinh α10 


ξ − 

h
2




+ E7 cos β30 

ξ − 

h
2



 cosh α30 


ξ − 

h
2



 + E8 sin β30 


ξ − 

h
2



 sinh α30 


ξ − 

h
2



 , (80)

P2
(s)

 (ξ) = E6 cos β10 

ξ − 

h
2



 cosh α10 


ξ − 

h
2



 − E5 sin β10 


ξ − 

h
2



 sinh α10 


ξ − 

h
2




+ E8 cos β30 

ξ − 

h
2



 cosh α30 


ξ − 

h
2



 − E7 sin β30 


ξ − 

h
2



 sinh α30 


ξ − 

h
2



 ,

(81)

R1
(a)

 (ξ) = (E5p1 + E6q1) cos β10 

ξ − 

h
2



 sinh α10 


ξ − 

h
2



 + (E6p1 − E5q1) sin β10 


ξ − 

h
2



 cosh α10 


ξ − 

h
2




+ (E7p3 + E8q3) cos β30 

ξ − 

h
2



 sinh α30 


ξ − 

h
2



 + (E8p3 − E7q3) sin β30 


ξ − 

h
2



 cosh α30 


ξ − 

h
2



 , (82)

R2
(a)

 (ξ) = (E6p1 − E5q1) cos β10 

ξ − 

h
2



 sinh α10 


ξ − 

h
2



 − (E5p1 + E6q1) sin β10 


ξ − 

h
2



 cosh α10 


ξ − 

h
2




+ (E8p3 − E7q3) cos β30 

ξ − 

h
2



 sinh α30 


ξ − 

h
2



 − (E7p3 + E8q3) sin β30 


ξ − 

h
2



 cosh α30 


ξ − 

h
2



 . (83)

From the closed linear system (78), we determine the four constants E5–E8 that complete the construction of
the second exact solution.

We will not present both exact solutions in explicit form because they are cumbersome. For the same reason,
we failed to strictly prove that the determinants of system (60), (69), and system (78) are not equal to zero. However,
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this can be done in a particular case for a nonconnected model. Moreover, numerical experiments have shown that the
indicated determinants are not equal to zero in the general case, too.

The two exact solutions obtained should be used in the following way. From (5), the analytical expressions
for the displacements u and v and the temperature T, which allow for the differentiation over all the variables for de-
termining the velocities, deformations, and stresses, are determined. The amplitudes Uj, Vj, and Tj are determined from
(56) for the first exact solution with boundary conditions (3) or from (71) for the second exact solution with boundary
conditions (4). The expressions for Pj

(s), Pj
(a), Rj

(s), and Rj
(a) are determined from (51)–(54), the constants E1–E4 are de-

termined by solving the linear system (60), (69), and the constants E5–E8 are determined from system (78). In the
process of numerical realization of the solutions, all the operations should be carried out in the reverse order: first, the
constants E1–E4 are determined from the solution of the linear system (60), (69) and the constants E5–E8 are deter-
mined from system (78), and then the functions Pj

(s), Pj
(a), Rj

(s), and Rj
(a) are determined from (51)–(54), and so on. At

M0 > 1, in both exact solutions (56) and (71), αk
∗ determined from (25)–(27) should be used instead of αk.

Conclusions. The exact solutions obtained by us show that harmonic vibrations of three types can arise in a
thermoelastic rod: a shear wave propagating with a velocity vµ = √µ ⁄ ρ  and two longitudinal waves propagating with
velocities vT = ω ⁄ β10 and ve = ω ⁄ β30. Under the actions along the normal to the boundaries of the rod, there arise
two longitudinal waves. The first of them arising at M0 → 0 (when the connectedness of the problem disappears) is a
temperature wave, and the second wave is a longitudinal mechanical wave. At M0 > 0 (in the connected problem), the
temperature wave vT, as a secondary effect, causes longitudinal deformations and the longitudinal wave ve influences
the temperature field. The temperature properties of the material, in accordance with the formulas for β10 and β30, in-
fluence the velocities of the longitudinal waves vT and ve. The shear actions give rise to shear waves; in this case, a
resonance is possible at a frequency ω = 2πn√µ ⁄ ρ  ⁄ h. The temperature field and the shear waves do not influence
each other. The connectedness of the thermoelastic problem in the two given exact solutions is determined by the di-
mensionless parameter M0. The analytical solutions of both problems are substantially dependent on M0, the threshold
value of which is M0 = 1. By the values of the thermophysical quantities taken from the reference work [8], one can
calculate M0, e.g., M0 = 0.02 for aluminum and M0 = 0.17 for bronze. If the formulation of the problem requires that
the calculation error be smaller than the parameter M0 or comparable with it, the connectedness should be taken into
account.

NOTATION

A∗, B∗, M0, N0, K0, L0, dimensionless parameters; A0k, Bjk, H0k, Dk, Ek, constant coefficients; b, thermal dif-
fusivity; C, specific heat capacity; C(2), space of twice differentiable functions; eij, σij, deformation and stress tensors;
F(ξ), auxiliary differentiable function; h, height of a triangle; i, imaginary unit; k, connectivity coefficient; nk, internal
unit normals to the sides of the triangle; (nx, ny) and (nkx, nky), Cartesian projections of the unit vectors; qj0, Tj0, uj,
vj0, σj0, τj0 (j = 1, 2), definite constants; pk, qk, auxiliary constants; r0, r, rk, radii-vectors of any pole, an auxiliary
point in Ω, and the vertices of the triangle at the cross section of a rod; Pj, Qj, Rj, one-dimensional solution; Uj, Vj,
Tj, conditional amplitudes of the harmonic oscillations of the displacement vectors u and v and the temperature T; t0,
conditional time of the whole process; un, uτ, normal and tangential components of the displacement vector in Γ; vµ,
velocity of a shear elastic wave; ve, velocity of a longitudinal elastic wave; vT, velocity of a temperature wave; x, y,
and t, Cartesian coordinates and time; α, β, characteristic roots; αj0, βi0, real and imaginary parts of the characteristic
roots; Γ, boundary of the right triangle; δij, unit tensor; ∆, Laplace operator; λ, µ, Lame′ constants; ξ, ξk, auxiliary
variables; ρ, density; δn and τn, normal and tangential components of the stress tensor in Γ; ω, frequency of harmonic
vibrations; Ω, region of the right triangle — cross section of the rod. Subscripts: e, elasticity; n, normal.
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